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Abstract. The pomeron model of Donnachie and Landshoff does not conserve the electromagnetic current
when applied to diffractive reactions such as electroproduction of a quark-antiquark pair or of a vector
meson. We propose a treatment of this problem which ensures a physical behaviour of cross sections in the
photoproduction limit and show that it leads to results rather similar to those obtained from two-gluon
exchange.

1 Introduction
The description of the pomeron within the framework of
QCD remains one of the great tasks in strong interaction
physics. Important progress has been made in this field
over the last years, especially in the study of diffractive
processes with a hard scale, for instance a large photon
virtuality Q2 in ep collisions. On the other hand, phe-
nomenological models are still of interest in this new dy-
namical regime: calculations in the framework of multi-
gluon exchange can be of considerable complexity, and
it is useful to have models that reproduce their results
in a simpler way, thus allowing the investigation of more
complicated reactions with a reasonable amount of effort.
Furthermore, such models provide an opportunity to ex-
trapolate from the hard to the soft diffractive regime, e.g.
to take the limit of small Q2 in diffractive ep scattering,
and to make contact with elastic and diffractive hadron
scattering, domains where the application of QCD is much
more difficult since perturbation theory is of little help. It
goes by itself that one cannot expect such models to re-
produce all results and aspects of more sophisticated and
more fundamental QCD approaches.

In this paper we are concerned with the pomeron model
of Donnachie and Landshoff (DL) [1] and its confronta-
tion with the QCD motivated model of nonperturbative
gluon exchange by Landshoff and Nachtmann (LN) [2,
3]. It was found in [4] that the DL model has problems
with electromagnetic gauge invariance, which appear for
instance when it is applied to the production of a quark-
antiquark pair in diffractive ep scattering. In Sect. 2 we
explain the origin of this problem and propose a possible
solution which makes the DL model reproduce several, al-
though not all results of the two-gluon calculation in the
LN approach. We then investigate exclusive vector meson
production under the same aspects. In Sect. 4 we discuss
our way to handle the gauge invariance problem from the
point of view of contact terms, and make some compari-
son with other approaches in the literature. We summarise
our results in Sect. 5.

2 Diffractive qq̄-production

2.1 The problem in the DL model and a solution

In the DL model the pomeron couples to quarks via their
vector current, a choice originally motivated by the analy-
sis of elastic and diffractive hadron-hadron scattering [5].
In this sense the pomeron is said to behave like a photon,
except that it has charge conjugation parity C = +1 unlike
the photon with C = −1. To implement this difference of
quantum numbers the model prescribes to subtract Feyn-
man diagrams which are related by reversing the charge
flow of quark lines, instead of adding them as one would
do if the pomeron were replaced by a photon.

Calculating the forward γ∗p scattering amplitude at
high energy in this model DL found that in order to obtain
Bjorken scaling of the proton structure function at small
x the quark-pomeron vertex cannot be pointlike but must
be softened at large quark virtualities [1]. They made the
ansatz

β0γ
µ f(k2

1 −m2
q) f(k2

2 −m2
q) (1)

with
f(k2) = µ2

0/(µ
2
0 − k2) (2)

for the pomeron coupling to quarks of mass mq and mo-
menta k1 and k2, with the constants β0 ≈ 2 GeV−1 and
µ0 ≈ 1 GeV determined from phenomenology.

We now investigate diffractive qq̄-production,

γ∗(q) + p(p) → q(Pq) + q̄(Pq̄) + p(p′) , (3)

with four-momenta given in parentheses. We will further
use the variables ∆ = p − p′, t = ∆2, W 2 = (p + q)2,
Q2 = −q2, M2 = (Pq + Pq̄)2, β = Q2/(2∆ · q) and
ξ = (∆·q)/(p·q). In the DL model this reaction is described
by the two diagrams of Fig. 1, taken with opposite relative
sign. One finds [4] that the electromagnetic current is not
conserved here: the γ∗p cross section σU for the unphysi-
cal photon polarisation εµ

3 = qµ/Q does not vanish but in-
stead has a 1/Q2 singularity in the photoproduction limit.
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Fig. 1. Diffractive qq̄-production in the DL model. The relative
sign of the diagrams is the opposite of what it would be if the
pomeron were replaced by a photon, because the pomeron and
photon have opposite charge conjugation parity

In a technical sense the reason is that the two diagrams in
Fig. 1 have the “wrong” relative sign which was assigned in
order to implement the correct charge conjugation parity
of the pomeron – for photon instead of pomeron exchange
gauge invariance is of course guaranteed. If one uses the
Feynman gauge for the photon field and defines longitu-
dinal and transverse photon polarisations with respect to
the γ∗p axis in the c.m. of the collision then the cross
section σL for longitudinal photons has the same unphysi-
cal 1/Q2 behaviour at small Q2, only the transverse cross
section σT is not affected by this problem.

It is instructive to look at the dependence of the cross
sections on the transverse momentum pt of the produced
quark in the γ∗p c.m. and on the invariant mass M of the
qq̄-pair. Taking quark masses equal to zero the unphys-
ical and longitudinal cross sections have a factor p2

t/M
2

relative to the transverse one, and as a consequence one
finds that at largeQ2 the pt-integrated cross sections dσU/
(dM2) and dσL/(dM2) are suppressed by µ2

0/Q
2·

log(Q2/µ2
0) compared with dσT /(dM2). In this sense one

can say that the gauge violating terms are of higher twist
and that the model can be used for leading twist quanti-
ties. In jet production, where p2

t/M
2 is not small, the un-

physical cross section is however not negligible compared
with dσT /(dp2

t dM
2), even at large Q2, and the model is

of no use as it stands.
Let us have a closer look at the origin of the bad Q2-

behaviour of dσL/(dp2
t dM

2). From the expression of the
longitudinal polarisation vector in Feynman gauge

ε0 =
1√

1 + p2Q2/(p·q)2
(

1
Q
q +

Q

p·q p
)

(4)

it is clear that the part of ε0 proportional to p gives a
factor Q in the amplitude and therefore a factor Q2 in
the γ∗p cross section as required by gauge invariance. The
unphysical behaviour comes from the part proportional to
q, which would give no contribution if the electromagnetic
current were conserved in the model.

Without current conservation the results of a calcula-
tion will clearly be gauge dependent. Therefore we need
to fix a photon gauge in order to make the model well

defined. We feel that this is legitimate in the context of a
phenomenological model, a choice of gauge then has to be
justified by its results. We choose to work in a noncovari-
ant gauge with gauge fixing vector p, where the photon
field satisfies A · p = 0. In this gauge a polarisation vector
ε in Feynman gauge becomes

ε → ε̃ = ε− p·ε
p·q q . (5)

It is instructive to compare the tensor structure of the
photon propagator,

gµν = −sgn(q2) εµ
0ε

ν
0 − εµ

1ε
ν
1 − εµ

2ε
ν
2 + sgn(q2) εµ

3ε
ν
3 (6)

in Feynman gauge and

gµν − 1
p·q (pµqν + qµpν) +

p2

(p·q)2 q
µqν

= −sgn(q2) ε̃µ
0 ε̃

ν
0 − ε̃µ

1 ε̃
ν
1 − ε̃µ

2 ε̃
ν
2 (7)

in our noncovariant gauge, where ε1 and ε2 are two or-
thogonal vectors transverse to p and q. We see that in the
amplitude for the electroproduction process ep → ep+ qq̄
the term εµ

3ε
ν
3 on the r.h.s. of (6) drops out when the index

µ is contracted with the electron current since this current
is conserved, so that we are left with the ill behaved contri-
bution from the contraction of qν/Q in εν

0 with the current
of the produced quarks. In the gauge (5) the transverse
polarisations, which dominate in the pt-integrated cross
sections at large Q2, are the same as before, ε̃1 = ε1 and
ε̃2 = ε2, whereas the longitudinal polarisation

ε̃0 =
1√

1 + p2Q2/(p·q)2 · Q

p·q
(
p− p2

p·q q
)

(8)

behaves like Q in the photoproduction limit and leads to a
reasonable behaviour of the amplitude. From the l.h.s. of
(7) we see that when changing from Feynman to our non-
covariant gauge we have effectively added the contraction
of −pµqν/(p · q) with the leptonic and hadronic currents
to the ep → ep + qq̄ amplitude, the terms with qµ in the
photon propagator giving zero when contracted with the
electron current.

Instead of (5) one may consider other noncovariant
gauges A · n = 0 with a suitably chosen vector n. Intro-
ducing longitudinal and transverse photon polarisations
with respect to n and q and repeating the arguments that
lead from (4) to (8) one will find that the ep amplitude
has a well behaved photoproduction limit. This amplitude
will in general be different for different choices of n since
one has effectively added −nµqν/(n · q) to the tensor gµν

in the photon propagator. Note that the γ∗p amplitude
for photons that are transverse with respect to p and q
will in general also be modified by such a choice of gauge.

A candidate gauge fixing vector is n = ∆, which for
t = 0 is equivalent to n = p since then ∆ = ξp, but
leads to different results at finite t. Taking n = ∆ looks
more symmetric with respect to the photon dissociation
and proton scattering parts of our reaction; to leading
order in ξ−1 the choice n = p is however equivalent to
n = p + q, which is also symmetric. We shall come back
to the question of p versus ∆ in Sect. 3.
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2.2 Comparison of the DL and LN models

We shall now see that in the gauge (5) the predictions of
the DL model for our process are remarkably similar to
those in the LN model, although they are not identical. We
restrict ourselves to t = 0 but admit a finite quark mass
mq in the produced qq̄-pair. With Hand’s convention for
the flux factor the cross section of the process (3) for a
given photon polarisation reads

dσ

dt dp2
t dM

2

∣∣∣∣
t=0

=
3

128π3

ξ2

(Q2 +M2)2M2
√

1 − 4(p2
t +m2

q)/M2

×
∑
spins

′ |M(ε̃)|2 , (9)

where
∑ ′

spins stands for spin summation for the final state
particles and spin average for the initial proton. In the DL
model one has

M(ε̃) =
16πeeq

3
j ·q
2p·q ξ

−αIP (0) ·K ū(Pq) γ ·ε̃ v(Pq̄) (10)

with

K =
9β2

0

4π
f(t̂−m2

q) + f(û−m2
q)

2
. (11)

Here t̂ = (q − Pq)2 and û = (q − Pq̄)2 are the Mandel-
stam variables of the pomeron-photon subreaction, eq is
the charge of the produced quark in units of the positron
charge e and αIP (t) is the soft pomeron trajectory.

jµ = ū(p′)
[
F1(t)γµ − i

2mp
σµν∆νF2(t)

]
u(p) (12)

is the isoscalar nucleon vector current with F1 and F2
being the isoscalar Dirac and Pauli nucleon form factors,
i.e. the sum of the respective form factors of proton and
neutron.

In the LN model the reaction (3) is described by the
diagrams of Fig. 2 plus those obtained by reversing the
charge flow of the upper quark line; for details of the cal-
culation cf. [4]. Key quantities of the model are the mo-
ments ∫ ∞

0
dl2[α(0)

s D(−l2)]2 =
9β2

0

4π∫ ∞

0
dl2[α(0)

s D(−l2)]2 · l2 =
9β2

0µ
2
0

8π
(13)

of the nonperturbative gluon propagator D(l2), where the
strong coupling in the nonperturbative region is taken as
α

(0)
s ≈ 1 following [6]. β0 and µ0 have been identified

in [3] with the corresponding parameters in the DL model,
cf. (1) and (2). Note that µ2

0 has here the significance of
a typical gluon virtuality l2 dominating in the integrals.
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Fig. 2. Two of the four diagrams for qq̄-production in the LN
model, the other two are obtained by reversing the charge flow
of the upper quark line. The lower line stands for a constituent
quark in the proton and the pomeron is approximated by two
nonperturbative gluons, represented by dashed lines

For diffractive qq̄-production we have in our noncovariant
gauge

M(ε̃) =
16πeeq

3
j ·q
2p·q ξ

−αIP (0)

√
αs(λ2)

α
(0)
s

×
[
L1 ū(Pq) γ ·ε̃ v(Pq̄)

− (L1 − L2)
ε̃·q
∆·q ū(Pq) γ ·∆v(Pq̄)

+ (L1 − L2)
1
λ2 mq ū(Pq) γ ·ε̃ γ ·∆v(Pq̄)

]
, (14)

where

Li =
∫ ∞

0
dl2

[
α(0)

s D(−l2)
]2
fi(l2, p2

t , λ
2) , i = 1, 2 (15)

are loop integrals with weighting functions f1, f2 whose
expressions can be found in [4]. The variable

λ2 =
p2

t +m2
q

1 − β
(16)

can be seen as the relevant hard scale of the process [7,
8]. The square root of αs(λ2)/α(0)

s in (14) corresponds to
taking the quark-gluon coupling at a perturbative scale
only for the upper left vertex in the diagrams of Fig. 2,
where one quark leg has a virtuality of order λ2. This
choice was made in [9] and [4,10,11]. One may argue that
the coupling should be taken as perturbative at both up-
per vertices, then there is no square root in (14), (17). A
similar comment holds for vector meson production (30).

At this point we remark that many features of the LN
model are due to the two-gluon exchange mechanism and
in common with other two-gluon approaches. The authors
of [8] and [12] use the gluon density in the proton to de-
scribe its coupling to the two exchanged gluons; at t = 0
their expressions are related to those in the LN model by
the substitution1

π

4
αs · ∂

∂l2
[
ξ g(ξ, l2)

]
1 This substitution is consistent with [6], where the gluon

density was estimated within the LN model
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→
√
αs(λ2)

α
(0)
s

· ξ1−αIP (0) [α(0)
s D(−l2)]2 · l2 , (17)

where g(ξ, l2) is the gluon density at a factorisation scale
l2 and αs on the l.h.s. taken at scale λ2 in [8] and l2

in [12]. The principal difference in the predictions of the
two approaches is thus the ξ-dependence and overall nor-
malisation, whereas the dependence on Q2, M2, p2

t and
the quark mass comes out very similar.

Coming back to the calculation in the LN model one
finds that the contribution of diagram (a) in Fig. 2 plus
the one with reversed quark charge flow is obtained by
replacing both L1 and L2 with 9β2

0/(4π), so that only the
first term in the brackets of (14) survives. Except for the
root of αs(λ2)/α(0)

s this is just the DL model expression
(10), (11) with the form factor (2) set equal to 1. In the
DL model this form factor ensures the decrease of the am-
plitude at large p2

t , while in the LN model the same effect
is achieved by the contribution of diagram (b) and its ana-
logue with opposite quark charge flow. In the LN model
one can of course also calculate with the polarisations ε
in Feynman gauge instead of ε̃ since the sum of the four
diagrams is gauge invariant. If one does this [4] then the
diagrams of type (a) give contributions to the amplitude
for longitudinal photons that do not vanish at Q2 → 0,
which are exactly cancelled by the diagrams of type (b). In
the DL model the global factor [f(t̂−m2

q) + f(û−m2
q)]/2

cannot achieve this and one is left with an unphysical be-
haviour at Q2 → 0 when working in Feynman gauge.

Comparing (10) with (14) we see that the expression
in the DL model can be obtained from the LN results by
replacing both loop integrals L1 and L2 byK and by drop-
ping the ratio αs(λ2)/α(0)

s of strong couplings at different
scales in the LN expression. This ratio gives a different
normalisation as a function of the scale λ2, whereas the
differences between the loop integrals (15) and the combi-
nation of form factors (11) have more subtle effects as we
shall now see.

At t = 0 the longitudinal polarisation vector reads
ε̃µ
0 = Q/(∆ · q) ·∆µ to leading order in ξ−1, and it is easy

to see that the sum of the first and the second term in
the brackets of (14) gives an amplitude proportional to
L2 for longitudinal photons. For transverse photons the
amplitude is proportional to L1 in the case mq = 0 when
only the first term contributes, and it involves both loop
integrals for finite quark mass due to the third term. These
differences are all absent in the DL result, where the effect
of the form factor is the same for all photon polarisations.

To illustrate the differences let us compare the values
of L1, L2 and K in some kinematical limits, keeping in
mind that there is also an additional root of αs(λ2)/α(0)

s

in (14). We always assume that µ2
0 � Q2 + M2 so that

from (2), (11) one has

K =
9β2

0

8π
µ2

0

µ2
0 + λ2 (18)

up to terms suppressed by µ2
0/(Q

2 +M2).

For λ2 � µ2
0 a reasonable approximation of the loop

integrals L1, L2 is obtained by expanding the weighting
functions f1, f2 around l2 = 0, and with (13) one finds

L1 ≈ 9β2
0µ

2
0

8πλ2 · 2
(

1 − p2
t

λ2

)
,

L2 ≈ 9β2
0µ

2
0

8πλ2 ·
(

1 − 2p2
t

λ2

)
,

K ≈ 9β2
0µ

2
0

8πλ2 . (19)

In the case p2
t � m2

q, which is relevant for jet production,
one has λ2 ≈ p2

t/(1−β) so that due to the particular choice
of form factor in (2) the p2

t -dependence of the amplitude
is the same in the two models for all photon polarisations.
The β-dependence is however different: in the LN model
one finds a zero of the longitudinal amplitude around β =
1/2 and a suppression of the transverse one at small β,
both phenomenologically important effects [10,4] which
are not found in the DL model.

In the opposite limit, p2
t � m2

q at λ2 � µ2
0, which is

relevant for heavy flavour production, one has p2
t/λ

2 � 1
and thus L2 ≈ K. In the various γ∗p cross sections ((27) of
[10]) one finds that terms going with L1 are suppressed by
powers of pt/mq compared with those only depending on
L2, so that in this limit the two models lead to the same
results, apart from the ratio of strong coupling constants.

When both pt and mq are small so that λ2 � µ2
0 the

weighting functions f1 and f2 tend to 1 and we have

L1, L2 ≈ 9β2
0

4π
, K ≈ 9β2

0

8π
, (20)

so that in this limit the DL amplitude is just half of that in
the LN model, given that αs(λ2)/α(0)

s in the LN expression
should be replaced with 1 at small λ2.

2.3 The longitudinal diffractive structure function
in the DL model

As an application of our modification of the DL model
we calculate the integrated cross section for diffractive qq̄-
production, which can be taken as an approximation for
the inclusive diffractive cross section – except in the re-
gion of small β where diffractive states with additional
gluons are known to be important. Expressing our result
in terms of the diffractive structure functions FD(4)

T and
F

D(4)
L , conventionally defined by

dσep

dx dQ2 dξ dt
=

4πα2
em

xQ4

[(
1 − y + y2/2

)
F

D(4)
T

+(1 − y)FD(4)
L

]
,

F
D(4)
2 = F

D(4)
T + F

D(4)
L , (21)

we obtain for Q2 +M2 � µ2
0

F
D(4)
T,L (ξ, β,Q2, t) = fIP (ξ, t) · F IP

T,L(β,Q2, t) (22)
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with

fIP (ξ, t) =
9β2

0

4π2 ξ
1−2αIP (t)

[
F1(t)2 − t

4m2
p

F2(t)2
]

(23)

and

F IP
T (β,Q2) =

4
3

· 3β2
0µ

2
0

8π2

{
β(1 − β) +O

(
βµ2

0

Q2

)}
,

F IP
L (β,Q2) =

4
3

· 3β2
0µ

2
0

8π2

{
4β3 µ

2
0

Q2

[
ln
(
Q2

βµ2
0

)
− 1 +

βµ2
0

Q2

]

+O

((
βµ2

0

Q2

)3
)}

, (24)

where we have summed over massless quarks u, ū, d, d̄, s, s̄.
We have made the approximation t = 0 in F IP

T and F IP
L but

kept the strong t-dependence from the pomeron trajectory
and the elastic form factors in fIP . The terms of higher
order in (24) give only small corrections: we find that the
effect of the terms of order βµ2

0/Q
2 in F IP

T is below 3%
for Q2/β ≥ 5 GeV2 and that the approximation for F IP

L

is better than 4% for Q2/β ≥ 10 GeV2.
The result for F IP

T is what has long been obtained by
DL [1]. It shows a scaling behaviour while the longitudi-
nal structure function is power suppressed in 1/Q2, with
Q2 · F IP

L having only a weak logarithmic dependence on
Q2. As β → 1 the transverse structure function vanishes
like 1−β whereas the longitudinal one goes to a constant.
All these features are also found in the LN model [11].
In the DL model the ratio F IP

L /F IP
T turns out to be nu-

merically rather big even at moderately large β: for Q2

between 10 GeV2 and 30 GeV2 it becomes equal to 1 at
β between 0.65 and 0.8. Taking Q2 = 25 GeV2 one finds
F IP

2 rising all the way up to β = 1, with the increase of
F IP

L overcompensating the decrease of F IP
T for β > 1/2.

This looks difficult to reconcile with what is seen in the
HERA data [13].

In the LN model one also finds that F IP
L becomes nu-

merically important at large β where F IP
T goes to zero [11],

but there the effect is much less dramatic. This is because
of the extra factor of the running strong coupling at the
scale λ2 = p2

t/(1 − β). It leads to a suppression at large β
which is stronger for F IP

L than for F IP
T since the former is

less dominated by small p2
t than the latter. It thus seems

that the scale dependence of the strong coupling which ap-
pears in the two-gluon calculation leads to a more realistic
prediction for the longitudinal structure function.

3 Exclusive production of vector mesons

The first process for which the DL and LN models have
been compared and where their close relation was ob-
served [3] was elastic electroproduction of a vector meson
V = ρ, φ, J/ψ, . . .,

γ∗(q) + p(p) → V (q′) + p(p′) . (25)

It turns out that the DL model in its original form also
violates electromagnetic current conservation in this pro-
cess, as was already remarked in [14]. For the γ∗p cross
section one obtains

dσ

dt
=

1
16πW 4

∑
spins

′ |M|2 (26)

with

M =
48M2

e

√
3πΓe+e−

M

j ·q
2p·q ξ

−αIP (t) PDL(ε, ε′)

× β2
0µ

2
0

Q2 +M2 − t+ 2µ2
0
, (27)

where M denotes the meson mass, Γe+e− its decay width
into e+e−, and ε and ε′ the respective polarisation vec-
tors of photon and meson. The polarisation dependence is
given by

PDL(ε, ε′) =
(p·ε) (∆·ε′) − (∆·ε) (p·ε′) + (ε·ε′) (p·q)

p·q ,

(28)
where we have used ε′·q′ = 0 but not made any assumption
about ε so that this expression holds in any photon gauge.
As announced PDL does not vanish for the unphysical
polarisation ε = ε3. Working in the collision c.m. and
defining polarisation vectors with respect to the p – q axis
for the photon and with respect to the p′ – q′ axis for the
meson we find in particular that for the transition of a
longitudinal photon to a longitudinal vector meson one
has

PDL(L,L) =
Q2 −M2 + t

2MQ
(29)

in Feynman gauge, with an unphysical behaviour at small
Q. In the LN model one finds2

M =
48M2

e

√
3πΓe+e−

M

j ·q
2p·q ξ

−αIP (t)

√
αs(λ2)

α
(0)
s

PLN (ε, ε′)

×8
9

∫
d2lt[α(0)

s ]2D
(
(lt − ∆t/2)2

)
D
(
(lt + ∆t/2)2

)
× (l2t − ∆2

t/4)
Q2 +M2 − t+ 4(l2t − ∆2

t/4)
, (30)

where ∆t is the transverse part of ∆ with respect to p and
q, and

PLN (ε, ε′) = (31)
(p·ε) (∆·ε′) − (∆·ε) (p·ε′) + (ε·ε′) (p·q) + ξ (p·ε) (p·ε′)

p·q .

Again this expression is valid in any photon gauge. If
we require Q2 + M2 � µ2

0 and remember that the typ-
ical gluon virtualities in the integrals (13) are of order µ2

0

2 Our expression for M differs from those in [3] and [9,15]
by numerical factors. Making the replacement (17) we agree
with the result of [16]
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then the terms after PDL and PLN in (27) and (30) are
equal at t = 0; their difference will only become impor-
tant when −t is of order µ2

0. Apart from this and from the
root of αs(λ2)/α(0)

s , where in analogy to (16) one would
now choose λ2 = (Q2 +M2)/4, the amplitudes in the two
models then differ only by their polarisation factors PDL
and PLN . The latter has an extra term ξ (p · ε) (p · ε′) in
the numerator, which was overlooked in [3,9] and recently
reported in [15]. It precisely restores gauge invariance and
guarantees a reasonable small-Q2 behaviour

PLN (L,L) =
Q

M
(32)

for the transition from a longitudinal photon to a longi-
tudinal meson. (29) and (32) do not even agree in the
limit Q2 � M2, where PLN (L,L) is twice as large as
PDL(L,L). For transverse photons on the other hand PDL
gives the same as PLN . Note however that, unlike in the
case of the diffractive structure function discussed in
Sect. 2.3, transverse photon polarisation in vector meson
production is suppressed at large Q2; with (32) one finds
σL/σT = Q2/M2 for the ratio of longitudinal and trans-
verse cross sections at all Q2 and t.

If we work in the gauge A·p = 0 then the extra term in
PLN vanishes identically so that PDL agrees with PLN for
all physical photon polarisations. Defining the DL model
in this gauge we thus find that for Q2 + M2 � µ2

0 and
−t � µ2

0 it gives the same result as the LN approach
up to the scale dependent ratio αs(λ2)/α(0)

s . This corre-
sponds to what we found for qq̄-production in the limit
m2

q � p2
t and λ2 � µ2

0 in Sect. 2.2; note that following [1]
in the calculation of meson production we have used a con-
stituent mass of M/2 for the quarks and neglected their
transverse momentum in the meson so that kinematically
the two processes are equivalent.

Let us finally compare the two gauges A · n = 0 with
n = p and n = ∆ at finite t. With ∆ as gauge fixing
vector one does not reproduce the results of the LN calcu-
lation since the extra term in PLN does not always van-
ish. This happens when the photon is transversely po-
larised in the scattering plane while the meson is longitu-
dinal. PLN is then negligible in the small-ξ limit whereas
PDL = −√| t | /M is not: the DL model defined in this
gauge thus violates s-channel helicity conservation. Both
from this point of view and in order to reproduce as closely
as possible the two-gluon result the choice n = p therefore
seems preferable to us.

4 Discussion

4.1 Contact terms

The point of view underlying our detailed comparison of
the DL and the LN models is that diffraction can be de-
scribed in QCD by multi-gluon exchange in the colour
singlet channel, and that the LN model is a simple imple-
mentation of this idea. The DL model, on the other hand,

looks more like an effective theory in which gluon degrees
of freedom are no longer explicitly present.

It can be shown that in the high-energy limit the cou-
pling of two t-channel gluons to a single quark line can be
written in terms of the quark vector current [2]. Thus the
diagram in Fig. 2 (a) is equivalent to the one in Fig. 1 (a)
calculated without a form factor for the quark-pomeron
coupling, as we reported in the sequel of (17). Technically
this is seen as follows: for the upper quark line in Fig. 2 (a)
one has 6p (6k+mq)6p ≈ 2(p ·k)6p to leading order in energy,
where k denotes the momentum of the quark line between
the two quark-gluon vertices, while p is the dominant part
of the gluon polarisation at each vertex and becomes the
dominant “pomeron polarisation” in the DL model. One
can also explicitly see how this gives the correct C = +1
quantum number of the exchange: reversing the charge
flow of the quark line but keeping the flow of its momen-
tum unchanged one obtains 6p (−6k +mq)6p ≈ −2(p · k)6p ;
the relative minus sign is precisely what is put in by hand
between the two diagrams in the DL model.

The diagram in Fig. 2 (b) has a different topology than
the diagrams of Fig. 1, and its contribution to the ampli-
tude cannot be entirely rewritten in terms of an effective
quark-pomeron coupling with a form factor. It is plausi-
ble to assume that a part of its contribution will have the
structure of a contact interaction between the quark line,
the pomeron and the photon; note that the generation of
contact interactions is well known in effective field the-
ories. Such a contact interaction can have a rather rich
structure and we are not attempting here to construct a
corresponding extension of the DL model, in which gauge
invariance is restored. Let us however make the hypothesis
that such an extension can be found, where the sum of all
diagrams for a process conserves the electromagnetic cur-
rent. Terms with an unphysical 1/Q-behaviour from the
diagrams of Fig. 1 will then be cancelled by terms from
the diagram with a quark-pomeron-photon contact inter-
action.

Now the procedure of gauge fixing we proposed in
Sect. 2.1 can be seen in a different light. In a gauge invari-
ant theory one can of course work in any photon gauge;
some terms in the amplitude will be “shifted” between dif-
ferent diagrams when the gauge is changed. There will be
gauges for which the diagrams with and without contact
term are separately well behaved in Q; an example is just
the gauge A ·n = 0 with a suitably chosen vector n. Leav-
ing out the contribution from the contact term (because
we do not know its form) we then make an error, but this
error is finite in the photoproduction limit. The error will
be different for different choices of n; and whether there is
a particularly good choice or even one where the contact
term is completely eliminated we can of course not de-
termine without knowing the specific form of the contact
interaction. Nevertheless there are certain criteria: our dis-
cussion at the end of Sect. 3 shows for instance that there
are “unfortunate” choices for which s-channel helicity in
meson production is not conserved by the diagrams with-
out contact terms; in a model reproducing the two-gluon
exchange results such helicity violating terms will then
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only be cancelled when contact interaction diagrams are
taken into account.

4.2 Comparison with other approaches

Several approaches to the problem of coupling the pome-
ron to quarks have been made in the literature. In [17] and
later in [18] the pomeron was treated exactly like a photon,
with a γµ-coupling but without a form factor and without
any relative minus signs between diagrams. By construc-
tion this model does not have any trouble with gauge in-
variance, but at the price of actually describing C = −1
instead of C = +1 exchange. It can for instance not de-
scribe the forward γ∗p scattering amplitude, i.e. the inclu-
sive proton structure function at small x, since the cou-
pling of three vector particles (two γ∗ and the pomeron) to
a quark loop vanishes due to Furry’s theorem. For diffrac-
tive qq̄-production it gives a pt-behaviour that is remark-
ably different from the one in the DL calculation. The DL
model with the form factor (2), as well as the LN model,
gives a transverse γ∗p cross section dσT /(dp2

t dM
2) that

falls off approximately like 1/p4
t at large pt and is finite

as pt goes to zero. In the approach of [17,18] the decrease
at large pt is much slower, and for massless quarks one
has a 1/p2

t -singularity at zero pt. This has important con-
sequences for the description of the leading twist part of
FD

2 in terms of diffractive parton densities, whose evo-
lution equation then has an inhomogeneous term – just
as in the case of parton densities in the photon – which
is intimately related with this collinear singularity in the
transverse qq̄ cross section. Such an inhomogeneous term
will not be generated in the DL model. We also remark
that unlike the DL and LN approaches the pomeron model
of [17,18] gives a leading twist contribution to the longitu-
dinal structure function FD

L , going like β2(1−β), in strict
analogy with the photon structure function [19].

The model of [20] assumes a pointlike quark-pomeron
coupling through the scalar instead of the vector current of
the quarks, i.e. it treats the pomeron as a scalar exchange.
This is again gauge invariant, and the scalar current has
the correct quantum numbers to model the pomeron, in
particular it is C = +1. Taking the produced quarks as
massless one obtains a transverse qq̄ cross section going
like 1/p2

t at large and at small pt – the divergence will
again lead to an inhomogeneous evolution equation for
diffractive quark densities – and a longitudinal qq̄ cross
section that vanishes at t = 0. We note that for massless
quarks a scalar quark-pomeron coupling flips the quark
helicity, in contrast to models with a vector coupling which
conserves it. The helicity of massless quarks is of course
also conserved by multi-gluon exchange, at least if one
considers the γµ-structure of the perturbative quark-gluon
vertex to be relevant in this context.

The starting point of [14] is a pomeron with a vector
coupling and a sign factor to ensure C = +1 exchange;
a scalar term accompanied with specific sign instructions
is then added to the γµ-part of the coupling in order to
restore current conservation in vector meson production.

For a programme of investigating the general structure of
the pomeron-quark vertex we refer to [21].

An effective theory for high energy quark-quark scat-
tering, starting from multi-gluon exchange, has been for-
mulated in [22]. The current for C = +1 exchange has the

structure ψ̄γµ
↔
Dν1

↔
Dν2 . . .

↔
Dν2n+1ψ, where the odd number

of covariant derivatives gives the correct quantum num-
bers of the pomeron. The Dirac matrix γµ leads to the
same quark spin structure of the coupling as in the DL
model, while the derivatives guarantee the correct signs
between diagrams when the quark charge flow is reversed,
in a manner similar to the explicit example of two-gluon
exchange discussed in the previous subsection.

5 Summary

There are several possibilities to describe the pomeron
coupling to quarks in a phenomenological model. The
Donnachie-Landshoff model chooses a γµ-coupling and
implements the C = +1 parity of the pomeron by in-
troducing appropriate relative minus signs between di-
agrams. In order to obtain phenomenologically reason-
able results the pomeron-quark coupling cannot be point-
like in this model. We point out that multi-gluon ex-
change in QCD motivates a form factor behaviour of the
quark-pomeron coupling3 as well as helicity conservation
for massless quarks, which is ensured by the γµ-vertex in
the DL model.

The price to be paid for introducing minus signs “by
hand” in this model is that the electromagnetic current is
not conserved. We propose to define the model by spec-
ifying a noncovariant gauge A · n = 0 in which a good
Q2-behaviour is guaranteed for all physical photon polar-
isations in the limit where the photon becomes real. The
choice of a gauge fixing vector n is not unique and has to
be motivated, for instance by comparing predictions with
more elaborate models such as two-gluon exchange. Our
preferred choice here is n = p.

A way to restore current conservation is the introduc-
tion of contact terms between quark, photon and pomeron
lines, which seems natural if one thinks of the model as an
“effective theory” of multi-gluon exchange. To construct
such terms is beyond the scope of this work, but we note
that in such a model one can make a suitable choice of
photon gauge to minimise the contribution of contact term
graphs, so that reasonable results may be obtained even
when they are left out. Our choice of gauge then assures
in particular a good Q2-behaviour of the diagrams with
and without contact terms separately.

We have applied the DL model in the gauge A·p = 0 to
diffractive qq̄-production at t = 0 and compared in some
detail its results with those of the LN model of two-gluon
exchange. While their predictions differ in detail there is

3 This should at least hold for the part of the coupling that
gives the leading twist contribution to the diffractive struc-
ture function F D

2 . In [23] a possible pointlike structure of the
pomeron in perturbative QCD was discussed at the level of
nonleading twist
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a strong similarity between the two models, in particu-
lar for the pt-dependence, which leads to the prediction
that FD

T is of leading twist whereas FD
L is not. For vector

meson production we find almost identical results in the
two models when Q2 or the meson mass is large and t is
small, provided one takes p as gauge fixing vector. Taking
∆ instead would lead to a violation of s-channel helicity
conservation, at variance with two-gluon exchange.
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